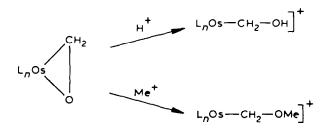
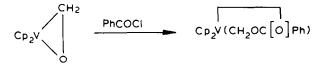
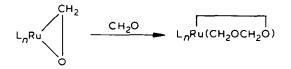
Preliminary communication


REACTIONS OF OSMIUM COORDINATED FORMALDEHYDE. SYNTHESIS OF COMPLEXES OF SELENOFORMALDEHYDE AND TELLUROFORMALDEHYDE

C.E.L. HEADFORD and W.R. ROPER* Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received November 9th, 1982)


Summary

 $\frac{Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2}{Os(CH_2OC[Se]Se)(CO)_2(PPh_3)_2}$ reacts with CSe₂ to form a metallacycle $Os(H_2OC[Se]Se)(CO)_2(PPh_3)_2$ This compound breaks down to $Os(\eta^2 - CH_2Se)(CO)_2(PPh_3)_2$ with probable loss of COSe. An alternative route to $Os(\eta^2 - CH_2Se)(CO)_2(PPh_3)_2$ and also $Os(\eta^2 - CH_2Te)(CO)_2(PPh_3)_2$ is through reaction of $Os(CH_2I)I(CO)_2(PPh_3)_2$ with SeH⁻ and TeH⁻, respectively. HCl with $Os(\eta^2 - CH_2E)(CO)_2(PPh_3)_2$ (E = Se or Te) gives $OsCl(EMe)(CO)_2(PPh_3)_2$ while methyl iodide gives $[Os(\eta^2 - CH_2EMe)(CO)_2 - (PPh_3)_2]I$. BH₄⁻ reacts with these cations to cleave the C--E bond and form $Os(CH_3)(EMe)(CO)_2(PPh_3)_2$.

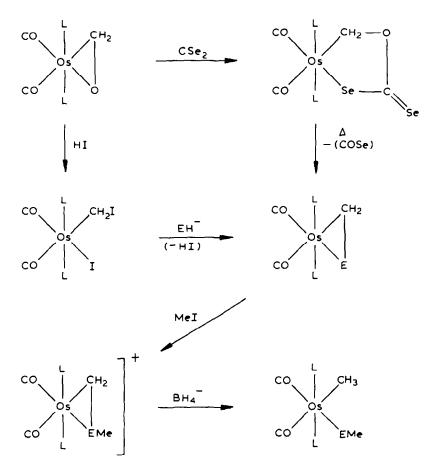

The simple transformations undergone by a metal-bound formaldehyde molecule are of interest because coordinated formaldehyde may play a significant role in CO reduction [1]. We have shown that for the well-characterised formaldehyde complex $Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2$ [2,3] reaction with the electrophiles H⁺ and Me⁺ results in ring opening and the formation of oxymethylene derivatives [2,3,4].

Similarly, for a vanadium-formaldehyde complex conversion to acyloxymethylene derivatives has been demonstrated [5]:

In addition, while attempting to produce a formaldehyde complex of $\operatorname{Ru}(\operatorname{CO})(\operatorname{PPh}_3)_3$ we observed formation of $\operatorname{Ru}(\operatorname{CH}_3)(\eta^2 - O_2\operatorname{CH})(\operatorname{CO})(\operatorname{PPh}_3)_2$ [6] and suggested that this product might possibly have arisen from the intermediate formation of a metallacycle from addition of two molecules of formaldehyde, viz.

To demonstrate the formation of stable examples of such five-membered rings we have examined reaction between $Os(\eta^2 - CH_2 O)(CO)_2(PPh_3)_2$ and the powerful electrophile, CSe_2 . This reaction is described here together with the characterisation of stable complexes of monomeric selenoformaldehyde and telluroformaldehyde thus completing the series $Os(\eta^2 - CH_2 X)(CO)_2(PPh_3)_2$ for X = O [2,3], S [7], Se, and Te.

Reaction between CSe_2 and $Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2$ affords, after chromatography on florisil, a yellow-crystalline product having the composition of a 1/1 adduct and with an IR spectrum (see Table 1) compatible with the metallacycle, $Os(CH_2OC[Se]Se)(CO)_2(PPh_3)_2$. Heating a CH_2Cl_2 solution of this compound under reflux for several hours resulted in the formation of $Os(\eta^2 - CH_2Se)(CO)_2(PPh_3)_2$, isolated as pale yellow crystals, presumably with simultaneous elimination of COSe (see Scheme 1). A superior preparative

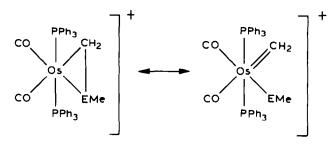

TABLE 1

Compound ^c	ν(CO) (cm ⁻¹)	Chemical shift (7) and coupling constant (Hz)
$Os(\eta^2 - CH_2 O)(CO)_2 (PPh_1)_2$	1977, 1902	$7.44(t), {}^{3}J(H-P) 4.0$
$Os(\eta^2 - CH_2 S)(CO)_2(PPh_2)_2$	1985, 1915	$9.10(t), {}^{3}J(H-P) 4.6$
$O_{s}(\eta^{2} - CH_{1}Se)(CO)_{2}(PPh_{3})_{2}$	1986, 1919	$8.22(t), {}^{3}J(H-P) 4.8$
$O_s(\eta^2 - CH_2 Te)(CO)_2(PPh_3)_2$	1991, 1922	$7.92(t), {}^{3}J(H-P) 6.0$
$O_{s(CH_{2}OC[Se]Se)(CO)_{2}(PPh_{3})_{2}}^{d}$	2015, 1953	
$[O_8(\eta^2 - CH_2SeMe)(CO)_2(PPh_3)_2]I$	2020, 1953	7.58(t), ³ J(H-P) 10.5; 8.57(s) (SeMe)
[Os(7 ² -CH, TeMe)(CO), (PPh3),]1	2024, 1947	7.41(t), ³ J(H-P) 10.0; 8.98(s) (TeMe)
Os(CH ₃)(SeMe)(CO) ₂ (PPh ₃) ₂	1981, 1912	10.16(t) ³ J(H-P) 7.8; 9.23(s) (SeMe)
Os(CH ₁)(TeMe)(CO) ₂ (PPh ₃),	2000, 1936	10.27(t) ³ J(H-P) 7.4; 9.43(s) (TeMe)

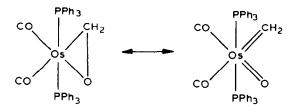
IR ^a and ¹H NMR ^b data for chalcoformaldehyde complexes of osmium and derivatives

^a Measured as Nujol mulls. ^b In CDCl₃. ^c All compounds have satisfactory elemental analyses.

^d Bands at 1148, 935 associated with metallacycle.


SCHEME 1. Synthesis and reactions of selenoformaldehyde and telluroformaldehyde complexes of osmium ($L = PPh_3$, E = Se or Te).

route to the selenoformaldehyde complex is through reaction of the iodomethyl complex, $Os(CH_2I)I(CO)_2(PPh_3)_2$ [3] with SeH⁻. The immediate product of this reaction is $Os(CH_2SeH)I(CO)_2(PPh_3)_2$ but attempted recrystallisation of this leads to rapid loss of HI and formation of $Os(\eta^2 - CH_2Se)$ - $(CO)_2(PPh_3)_2$. The same approach using TeH⁻ leads to $Os(\eta^2 - CH_2Te)(CO)_2$ - $(PPh_3)_2$ as bright yellow air-stable crystals. Various polymeric forms of selenoformaldehyde have been prepared and characterised, e.g. the cyclic trimer 1,3,5-triselenane [8] but monomeric selenoformaldehyde is unknown. A trimer of telluroformaldehyde has also been reported but was not characterised [9]. Spectral data for the complete series of chalcoformaldehyde complexes are collected in Table 1.


Treatment of $Os(\eta^2 - CH_2 E)(CO)_2(PPh_3)_2$ (E = Se or Te) with HCl yields $OsCl(EMe)(CO)_2(PPh_3)_2$ probably via initial protonation at the metal. This behaviour is exactly that observed for $Os(\eta^2 - CH_2 S)(CO)_2(PPh_3)_2$ [7].

In contrast to the acid reaction, alkylation with methyl iodide occurred at the selenium or tellurium atom to yield $[Os(\eta^2 - CH_2 EMe)(CO)_2(PPh_3)_2]$ I. The reaction of these cations with NaBH₄ did not yield the expected ring-

opened hydride-containing derivative $Os(\eta^1 - CH_2 EMe)H(CO)_2(PPh_3)_2$ but instead gave methylosmium complexes $OsCH_3(EMe)(CO)_2(PPh_3)_2$ (see Scheme 1). This surprising reaction perhaps suggests that the following resonance forms both contribute to the bonding in $[Os(\eta^2 - CH_2 EMe)(CO)_2(PPh_3)_2]^+$

In this connection, it can also be noted that the very long C–O bond distance of 1.584(11) Å found in $Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2$ [3] likewise implies a contribution to the bonding in this molecule from a "methylideneoxide" resonance form

We thank the N.Z. Universities Grants Committee for the award of a Postgraduate Scholarship to C.E.L.H. and Johnson Matthey Ltd for a generous load of osmium tetroxide.

References

- 1 E.L. Muetterties and J. Stein, Chem. Rev., 79 (1979) 479.
- 2 K.L. Brown, G.R. Clark, C.E.L. Headford, K. Marsden and W.R. Roper, J. Amer. Chem. Soc., 101 (1979) 503.
- 3 G.R. Clark, C.E.L. Headford, K. Marsden and W.R. Roper, J. Organometal. Chem., 231 (1982) 335.
- 4 C.E.L. Headford and W.R. Roper, J. Organometal, Chem., 198 (1980) C7.
- 5 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Amer. Chem. Soc., 104 (1982) 2019.
- 6 W.R. Roper and L.J. Wright, J. Organometal. Chem., 234 (1982) C5.
- 7 T.J. Collins and W.R. Roper, J. Organometal. Chem., 159 (1978) 73.
- 8 L. Mortillaro, L. Credall, M. Russo and C. De Checchi, J. Polymer Sci., Part B, Polymer Lett., 3 (1965) 581.
- 9 F.D. Williams and F.X. Dunbar, Chem, Commun., (1968) 459.